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The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels
is studied. The classical approach of Johnsonet al. @J. Fluid Mech.176, 379 ~1987!# for smooth
geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou@Phys.
Rev. Lett.61, 1591 ~1988!# and Avellaneda and Torquato@Phys. Fluids A3, 2529 ~1991!#. For
wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension
proposed by Achdou and Avellaneda@Phys. Fluids A4, 2561 ~1992!#. The dependency of the
nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations
for various apex angles in two-dimensional channels confirmed this theoretical dependency, which
is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found
that the contribution of the singularities does not alter the parameters of the classical theory by
Johnsonet al. © 2003 American Institute of Physics.@DOI: 10.1063/1.1571545#
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I. INTRODUCTION

The problem of fluid flow through porous media is
paramount importance in many technological areas. In
filled sound absorbing media, a precise prediction of so
absorption versus frequency is needed.1 In the oil industry,
exploration wells are probed by acoustic tools and reser
properties are delineated from the recorded wave trains.2 The
dynamic permeabilityk(v), and the dynamic tortuositya~v!
are important properties to describe the macroscopic fl
through porous media subjected to an oscillatory press
gradient. Here, the term macroscopic refers to a length s
L that is much larger than any pore sizea. HereL is defined
as characteristic wavelength being the product of the fl
sound speedc, and an intrinsic viscous relaxation timea2/n,
wheren is the kinematic viscosity of the pore fluid.1,3 Intro-
ducing an exp(ivt) dependence for the fluid pressurep and
the macroscopic fluid velocityU, k(v) anda~v! are defined
by

hf

k~v!
Û52“ p̂, ~1!

ivr fa~v!Û52“ p̂. ~2!

In these two expressions,h is the fluid viscosity,r f is the
fluid density, andf is the porosity. These relations take in
account, in an averaged sense, the fluid motion that ta
place in the pore structure, so thatk(v) anda~v! depend on
the morphology of the pore space. Johnsonet al.4 and later
Sheng and Zhou5 and Zhou and Sheng,6 argued that the tran
sition from low-frequency viscous behavior to hig
frequency inertia behavior must be determined by the r
1761070-6631/2003/15(6)/1766/10/$20.00
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p1 of the length scalesAFk0 andd. Herek0 is the stationary
Darcy permeability, andF is the formation factor, a nondi
mensional parameter that is related to the effective electr
conductivity of the porous medium saturated with a cond
tive fluid. The viscous skin depthd5A2n/v. It was conse-
quently postulated thatk(v) satisfies a universally valid
scaling function,

k~v!5k0f S Fk0

d2 D . ~3!

This also means that a characteristic frequencyvc5n/Fk0

can be defined where the viscous forces and the inertia fo
are of the same order of magnitude. Experimental work
Auriault et al.,7 Charlaixet al.,8 and Smeulderset al.3 show
very good agreement of such theory on a wide variety
porous samples. A detailed theoretical analysis, howe
showed that the structure functionf of ~3! must also depend
on the ratiop25d/L, where L is a pore volume-to-pore
surface ratio weighted according to potential theory.4 Sur-
prisingly, for a wide variety of morphologies,p1 and p2

were found not to be independent, i.e., their product w
found to beA1/8, at least approximately. These morpho
gies had in common that they were smooth on the pore sc
i.e., the pore surface had bounded curvature. The possib
of departure from the structure functionf for corrugated
morphologies was investigated by several authors such
Kosteket al.,9 Smeulderset al.,10 Firdaousset al.,11 and Cor-
tis and Smeulders.12 It appeared that high values forp1

3p2 could be reached for special cases, but these inves
tions still did not consider any comparison over the fr
quency domain. In other words, only the assumption t
6 © 2003 American Institute of Physics
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1767Phys. Fluids, Vol. 15, No. 6, June 2003 Influence of pore roughness
p13p2'A1/8 was invalidated for some cases, but the str
ture functionf could still be fully correct, if we rewrite it as
a function of two parameters:3,4

k~v!5k0f S Fk0

d2 ,
Fk0

L2 D . ~4!

In a paper by Achdou and Avellaneda,13 however, departures
from ~4! were observed for microgeometries consisting
corrugated tubes. For high frequencies, they observe
slower convergence ofk(v) to its asymptotic limit than pre-
dicted from universality theory. A nonanalytic correction
the structure function~4! was proposed. Our aim in this pa
per is to study this nonanalytic correction factor. From m
crostructure, the dynamic permeability and tortuosity re
tions will be derived. Then, analyzing in detail the flu
velocity pattern in the bulk fluid and the boundary layer, t
classical Johnsonet al.4 high-frequency limit for smooth ge
ometries will be obtained in different manners, making a
parent the discrepancy with the Sheng and Zhou5 treatment,
and clarifying the asymptotic boundary layer analysis p
posed by Avellaneda and Torquato.14 For microgeometries
consisting of corrugated tubes, this leads to a somewhat
ferent high-frequency correction than proposed by Achd
and Avellaneda.13 Furthermore, the theoretical prediction
will be numerically evaluated for two-dimensional chann
that have wedge-shaped asperities.

II. OSCILLATING STOKES FLOW

Considering the unsteady Stokes equation for the fl
velocity field v, we may write

ivr f v̂52“ p̂1h¹2v̂1ĝe, ~5!

wheree is the unit vector (ex ,ey ,ez), and ĝ is a spatially
uniform oscillating source term, which is expressed
N m23. In Achdou and Avellaneda,13 ĝ is an external oscil-
latory pressure gradient, which also appears quite natura
the conventional technique of homogenization is used. Z
and Sheng,6 Smeulderset al.,3 and Lafargeet al.1 denote this
externally applied pressure gradient2“xp0 . Indeed, the ac-
tual pressurep in the fluid can be viewed as the sum of i
local mean valuep05^p& and its deviatoric partp̂5p
2^p&, where^ & denotes averaging over the pore fluid vo
umeVf . The local mean valuep0 varies at the macroscopi
length scaleL, thus its gradient may be considered a spa
constant inVf . The deviatoric partp̂ varies at the pore scal
a and is a compact field of zero mean value. This means t
on average, it does not increase or decrease in the dire
of e. It is fluctuating at the microscopic level because of t
pore geometry, but it does not change from place to pl
when averages are considered. For periodic microstructu
the compact character ofp̂ is expressed by periodic bound
ary conditions. Furthermore, it can be obtained from hom
enization theory that, because of the scale separationL@a,
the fluid is locally incompressible,

“"v̂50. ~6!
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Introducing the scaled velocityṽ5h v̂/ĝ expressed in m2,
and the scaled pressurep̃5 p̂/ĝ expressed in m, the unstead
Stokes problem may be written as

iv ṽ/n52“ p̃1¹2ṽ1e, ~7a!

“"ṽ50, ~7b!

ṽ50, on the pore walls, ~7c!

p̃: compact. ~7d!

The solution to this problem can be expressed as a sum
normal modes:14

ṽ~r ,v!5 (
n51

`

bnCn~r !
sn

11 ivsn /n
, ~8a!

p̃~r ,v!5 (
n51

`

bnQn~r !
1

11 ivsn /n
1F~r !. ~8b!

Here, the dimensionless vector eigenfunctionsCn satisfy

2¹2Cn5
1

sn
~Cn2“Qn!, ~9a!

“"Cn50, ~9b!

Cn50, on the pore walls, ~9c!

Qn : compact, ~9d!

and the parameterssn , expressed in m2, are the inverse
eigenvalues of the Stokes operator. They determine the
cous relaxation timesQn5sn /n corresponding to purely
damped modesṽ5snCne2t/Qn as a solution to the homoge
neous unsteady Stokes problem, i.e., with the external e
tation termĝ50 in ~5!. The functionsQn , which are non-
zero in general, have dimensions of length and determine
corresponding compact pressuresp̃5Qne2t/Qn. The largest
values1 is obviously of orderO(a2) and the parameterssn ,
sorted such thatsn11,sn , accumulate to 0 whenn→`.
Using the conditions~9!, it can be verified that the eigen
functionsC are orthogonal. They are complete in the su
space of the square integrable divergence-free fields havi
zero normal component on the pore walls. Furthermore, t
are chosen orthonormal,

1

Vf
E

Vf

Cn"CmdV5dnm . ~10!

The dimensionless expansion coefficientsbn are defined as

bn5
1

Vf
E

Vf

Cn"edV. ~11!

Now substituting~8a! and ~8b! in the Stokes equation~7a!
and using~9a!, we see that~7a! is satisfied if

(
n51

`

bnCn5e2“F. ~12!

Note that there is a unique solutionE, F to the following
electric problem:

E5e2“F, ~13a!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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“"E50, ~13b!

E"n50, on the pore walls, ~13c!

F: compact, ~13d!

wheren is the unit outward normal from the pore region.
particular, the identity(n51

` bnCn5E holds. The fieldE,
which solves the corresponding electrical conduction pr
lem for a porous medium filled with a conducting fluid an
having an insulating solid phase, can be interpreted as
scaled electric field, i.e., the local electric field divided by t
applied macroscopic potential gradient. Decomposition~13a!
is referred to by Avellaneda and Torquato14 as the so-called
Hodge decomposition. We notice that there is a direct re
tion to the tortuosity factora` that determines the effectiv
electric conductivity of the porous medium. Applying th
unit electric fielde, the microscopic current in the saturatin
fluid is j5s fE, wheres f is the fluid electric conductivity.
The macroscopic currentJ5f^ j & then obeys a macroscop
Ohm’s lawJ5seffe, with seff5fsf /a` , and

a`5
1

^E&"e
5

^E"E&

^E&"^E&
. ~14!

We assumed unidirectional or isotropic pore space so tha
tortuosity is a scalar. After multiplying~12! by e and aver-
aging, the identity

(
n51

`

bn
25

1

a`
~15!

immediately follows.
On the macrolevel, Darcy’s law describes the linear

sponse of the macroscopic velocityÛ to the source termĝe:

hf

k~v!
Û5ĝe, ~16!

wherek(v) is the frequency-dependent, complex-valued d
namic permeability. This relation is the counterpart of t
classical Darcy’s law for steady-state flow, and reduces t
for v→0. In general, the dynamic permeability is a secon
rank tensor that reduces to a scalar in the case of unid
tional, isotropic, or simple-cubic microstructures. In th
case, the macroscopic flowÛ is in the same direction as th
source termĝe, which means thatÛ5^v̂"e&e. From~16!, we
now easily find that

k~v!

f
5^ṽ"e&. ~17!

Substitution of~8a! yields a series expansion fork(v):

k~v!

f
5 (

n51

` bn
2sn

11 ivsn /n
. ~18!

Another form of ~17! is particularly useful. For any
divergence-free vector fieldw that has zero normal compo
nents on the interface, there is the identity

^w"e&5^w"E&, ~19!
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which follows directly from~13a! after integrating by parts
and using the compact character of the fields. Thus, we
have

k~v!

f
5^ṽ"E&. ~20!

The velocity response of the fluid to the source termĝe can
also be defined in analogy with the response of an ideal fl

r fa~v!ivÛ5ĝe, ~21!

wherea~v! is the frequency-dependent, complex-valued t
tuosity,

a~v!5
nf

ivk~v!
. ~22!

It may be verified that the following energetic representat
of a~v! is valid:

a~v!5
^ṽ"ṽ* &

^ ṽ&"^ṽ* &
2

n

iv

^ ṽ"¹2ṽ* &

^ṽ&"^ ṽ* &
, ~23!

where* denotes complex conjugation. The proof is given
Appendix A. Using homogenization theory, this result w
also obtained by Smeulderset al.3 Physically speaking, this
result expresses the condition that the work performed by
external force per unit time is equal to the rate of change
the kinetic energy plus the dissipated energy per unit tim
The real part of~23! is related to the kinetic energy, and th
imaginary part is related to the mean rate of energy diss
tion.

In the forthcoming, we will be mainly concerned wit
the high-frequency limitva2/n→` of the dynamic perme-
ability and tortuosity. In this limit, the denominators in~18!
may be replaced by the factorsivsn /n up to high values of
n, thus showing thatk(v)→nf/ iva` , according to~15!.
Indeed, assuming that the viscous term¹2ṽ is negligibly
small compared to the inertial term in~7a!, the Stokes prob-
lem ~7! degenerates into the electric or ideal fluid proble
~13!, andṽ→En/ iv. Substitution of this result forṽ in ~17!
or ~20! again yields the above leading behavior ofk(v) at
high frequencies, while substitution in~22! shows that the
corresponding result for the dynamic tortuosity isa(v)
→a` .

III. HIGH-FREQUENCY VELOCITY PATTERN IN
SMOOTH GEOMETRIES

We now examine the precise limit of the Stokes proble
~7! for «/a→0, where« is the complex viscous skin dept
parameter,

«5An/ iv5~12 i !d/2. ~24!

Writing the pressurep̃ in the form p̃5q̃1F @see~8b!# and
substituting in~7a!, we get

ṽ5«2~E2“q̃1¹2ṽ!. ~25!

Taking the curl of~25!, we obtain the diffusion equation fo
the vorticity, “Ãṽ2«2¹2

“Ãṽ50. Following Johnson
et al.,4 we note that in the limit of high frequencies the vi
cous skin depthd52u«u eventually becomes much smalle
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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than any characteristic pore sizea. Any vorticity generated
at the pore walls decays to zero as one moves away dista
of the orderd from the wall into the bulk of the pore. Thus
the Laplacian¹2ṽ52“Ã“Ãṽ, vanishes in the bulk fluid
except for a boundary layer of thicknessd near the pore
walls. It follows that outside this boundary layer, the flu
motion is that of potential flow, with

ṽ5 ṽp5«2~E2“q̃!. ~26!

It will be seen below that the presence of the pressure
dient term2“q̃ is a smallO(«/a) correction to the leading
O~1! flow patternE that appears because smallnormal com-
ponentsof the velocity are created at the virtual interfa
between the bulk potential flow region and the visco
boundary layer. Clearly, such normal components would
exist in straight channels for obvious symmetry reasons,
must therefore be related to the curvature of the pore wa
The tangentialcomponents of the velocity in the bounda
layer can be directly evaluated to leading order in terms
the E field only. Indeed, sinced is arbitrary small at high
enough frequencies, the walls of the pore appear to be fla
the region where the tangential velocity goes from 0 at
pore wall to the value«2E in the pore region. Thus, th
tangential components of the velocity may be written to le
ing order,15

ṽ5«2E~rw!~12e2b/«!, ~27!

whereb is a local coordinate measured from the pore wal
positionrw into the bulk of the pore:r2rw52bn. SinceE
varies at the pore scalea@d, no distinction is to be made
betweenr and rw in ~27!. Thus, we may combine~26! and
~27! and consider the velocity fieldṽ, including leading-
order tangential and normal components, as the solutio
the problem,

ṽ5s~r !~E2“P!, ~28a!

“"ṽ50, ~28b!

s~r !5«2~12e2b/«!, ~28c!

where we have introduced a compact fieldP, which is re-
lated toq̃ and defined as

“P5~12e2b/«!21
“q̃, ~29a!

in the boundary layer, and

“P5“q̃, ~29b!

outside. The fieldṽ then solves the electrical conductio
problem for a porous medium having an insulating so
phase and filled with a conducting fluid of conductivitys~r !.
Current conservation gives

2“"~s“P!1E"“s50. ~30!

In the limit «/a→0, only derivatives normal to the por
walls need to be considered in the boundary layer and
convenient to introduce the stretched coordinatez5b/« to
express the fact thats is a function ofz only. In addition, the
normal component of the unperturbed electric fieldEb ,
Downloaded 14 Sep 2003 to 132.77.4.43. Redistribution subject to AI
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which varies at scalea and is zero on the pore walls, may b
replaced by its first-order term«z(]Eb /]b)b50 . Equation
~30! is easily integrated to yield

]P

]b
5«S 12~11z!e2z

12e2z D S ]Eb

]b D
b50

. ~31!

We conclude that outside the boundary layer, the pertur
electric field is of the form

2“P5«N, ~32!

whereN is the unique solution of the problem:

N: gradient of a compact field, ~33a!

“"N50, ~33b!

N"n5S ]Eb

]b D
b50

, on the pore walls. ~33c!

We note that sinceP is a compact field, the perturbed fiel
«N is orthogonal toE in an averaged sense:

^E"N&50. ~34!

This can be seen from the same reasoning used to ob
~19!: becauseE is divergence-free and has zero normal co
ponents on the interface,~34! follows after integrating by
parts and using the compact character of the fields. Exp
expressions for the velocity fields inside and outside
boundary layer result immediately. Inside the boundary la
we find, using~28a!, ~28c!, and~31!

ṽ5«2~12e2b/«!E~rw!1«3F12S 11
b

« De2b/«G
3S ]Eb

]b D
b50

n, ~35a!

and outside the boundary layer we have, using~26!, ~29b!,
and ~32!

ṽ5«2@E~r !1«N~r !#. ~35b!

As mentioned previously, small normal components of
velocity are induced in the boundary layer, and these act
source for the additional ideal fluid flow«3N in the bulk.
Note that, thoughN is an ideal fluid flow, it is related to the
viscous nature of the fluid. This flow is orthogonal to th
main flow«2E, and has nonvanishing mean value. This p
cise representation of the velocity pattern, which, howev
does not include higher-order boundary layer tangen
terms O(«3/a) in ~35a! and higher-order bulk terms
O(«4/a2) in ~35b!, is used in the next section to clarify th
algebra involved in the high-frequency behavior of the d
namic permeability and tortuosity.

IV. HIGH-FREQUENCY PERMEABILITY AND
TORTUOSITY

As suggested in the previous section by the analysis
the velocity field for materials with bounded curvature of t
pore surface interface, the high-frequency developmen
the dynamic permeability and tortuosity may be written
successive powers of the viscous skin depth parameter:
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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a~v!5a`~11C«1D«21¯ !, ~36a!

k~v!

f
5

«2

a`
@12C«1~C22D !«21¯#. ~36b!

Three equivalent determinations of theC parameter will
now be considered, using either~17!, ~20!, or ~23!. The first
is a new derivation that supplements in the proper man
the incomplete determination by Sheng and Zhou.5 The sec-
ond is equivalent to the original arguments by Johns
et al.,4 and the third was employed by Avellaneda a
Torquato,14 though they did not capture all the details i
volved. The third method is the simplest one, and will a
be applied in Sec. VI to capture some of the effects relate
the presence of sharp edges in the pore wall geometry.
will show that in that case the set of equations~36! is modi-
fied as follows:

a~v!5a`~11C«1C1«w1¯ !, ~37a!

k~v!

f
5

«2

a`
~12C«2C1«w1¯ !, ~37b!

with the same inverse lengthC as before and the exponentw
(1,w,2) related to the apex angle of the edges.

To proceed now in the most direct manner, we substit
~35a! and~35b! into ~17!. Integrating the velocity field in the
whole fluid volume, we have

E
Vf

ṽ"edV5«2E
Vf

E"edV2«2E
BL

e2b/«E"edV

1«3E
IF

N"edV, ~38!

where the subscripts BL and IF denote integration over
boundary layer and the ideal fluid region, respectively. N
that we have not written the negligible contribution of t
normal components of the velocity in the boundary lay
Such a contribution would be associated with the constanD
in ~36a! and~36b! and is meaningless due to the higher-ord
tangential termsO(«3/a) not written in~35a! and the higher-
order bulk termsO(«4/a2) not written in~35b!. The bound-
ary layer contribution reduces exactly to a boundary integ
2«3*Sp

E"edS that is performed on the boundary wall
Moreover, extending with negligible error the volume of i
tegration in the last term of~38! to be that of the whole fluid,
and using the orthogonality property~34!, this last term is
written as«3*Vf

“F"NdV. Integrating by parts, it can als
be written as a boundary integral on the pore walls, nam
«3*Sp

FN"ndS. We thus obtain the result

k~v!

f
5

«2

a`
~12C«1¯ !, ~39!

with

C5
a`

Vf
E

Sp

S E"e2F
]Eb

]b DdS

5E
Sp

S E"e2F
]Eb

]b DdSY E
Vf

E2dV. ~40!
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This is an important result, which allows us to compare e
lier results from literature. As it holds that

E
Sp

F
]Eb

]b
dS5E

Sp

E"“FdS ~41!

~see Appendix B!, we may write that

C5
2

L
5

*Sp
E2dS

*Vf
E2dV

, ~42!

where we have used~13a!. This is the classical expression o
Johnsonet al.,4 who were the first to define the length-sca
parameterL as the weighted pore volume (Vf)-to-pore sur-
face (Sp) ratio. For tube flow,L equals the tube radius.

Equation~42! can also be obtained using the followin
energetic arguments. From~36a! we derive that, to the lead
ing order in the high-frequency limit,

Im a~v!

Rea~v!
52C

d

2
. ~43!

On the other hand, from~23!, we have that

Im a~v!

Rea~v!
5

d2

2

^ ṽ"¹2ṽ* &

^ṽ"ṽ* &
. ~44!

This means that we may write

C5 lim
d/a→0

d
^ṽ"¹2ṽ* &

^ṽ"ṽ* &
. ~45!

Substituting ṽ' ṽ* 'E, and ¹2ṽ* '2Ee2b/«* @see ~27!#,
and performing the integrals immediately yields~42!. Note
that because of the Laplacian in the numerator, there is
integration in the bulk but only a boundary layer contrib
tion. Note also that there is no first-order contribution of t
perturbed potential flow«N to the denominator due to th
orthogonality with the unperturbed flowE.

Finally, another method to obtain~42! is to use~20!.
From ~36b! we have that

lim
d/a→0

Rek~v!

f
5

1

&

C

a`
S n

v D 3/2

5
&

La`
S n

v D 3/2

. ~46!

Thus, from~20! it follows that

C5 lim
d/a→0

&a`S v

n D 3/2

Rê ṽ"E&. ~47!

Now, substituting the velocity pattern~35!, there is no bulk
contribution from the perturbed potential flow«3N that is
orthogonal toE. There is also no bulk contribution from th
unperturbed leading-order term«2E that is purely imaginary.
There is only a simple boundary layer contribution to eva
ate, which again leads to~42!.

In literature other expressions forL can be found. The
expression obtained by Sheng and Zhou5 and Zhou and
Sheng6 was as follows:

2

L
5

*Sp
E"edS

*Vf
E2dV

. ~48!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We notice that this is only the first term in~40!. The origin of
the incompleteness is the use of the ‘‘linear’’ average~17!
without taking into account the bulk contribution from th
small perturbed potential field«3N. The same expressio
~48! can be found in Pride16 in the context of electrokinetic
effects for sound propagation in a porous medium satura
with a conductive fluid. Avellaneda and Torquato14 tried to
clarify the discrepancy between~42! and~48! by considering
higher-order terms in the boundary layer calculation s
gested by Sheng and Zhou.5 However, the missing contribu
tion is a bulk term and their boundary layer analysis was s
incomplete.

To illustrate our dynamic permeability analysis, we w
first consider two straightforward models for porous me
that are wellknown in literature. Next, the effect of the pe
turbed bulk contribution will be demonstrated in the case
corrugated pore channels.

V. NONCORRUGATED PORE CHANNELS

As a model for porous media, Biot17 discussed an en
semble of parallel identical cylindrical tubes within a soli
The tube radius isR. The number density of tubes is repr
sented by the porosityf. When the fluid flow is oriented
along the cylinder axis of the tubes, it was already shown
Zwikker and Kosten18 that

k̃~v!5
k~v!

k0
5

8

ik2 S 12
2J1~ i 3/2k!

i 3/2kJ0~ i 3/2k! D , ~49!

wherek5RAv/n is the so-called Womersley number, an
J0 andJ1 are Bessel functions of the zeroth and first ord
Poiseuille flow prescribes thatk05 1

8fR2. This means that
the characteristic frequencyvc5nf/k0a` is equal to 8n/R2

in this case, andk5A8v/vc. For high frequencies, it fol-
lows directly from~49! that17

lim
v→`

k̃5
1

i ṽ S 12
12 i

2Aṽ
D , ~50!

where we have introducedṽ5v/vc . This expression is in
agreement with~46!, which is most conveniently shown b
writing ~46! as limv→` k̃5 1

2AM ṽ23/2, whereM is the so-
called shape factor:

M58k0a` /fL258Fk0 /L2, ~51!

which is identical to 1 in this case.
Another model that was discussed by Biot17 consists of

an ensemble of identical two-dimensional slits~slit opening
2R) within a solid. When the flow is oriented along the s
layers, it can be shown that

k̃~v!5
3

ik2 S 12
tanh~ i 1/2k!

i 1/2k D . ~52!

Here we find thatk05 1
3fR2, so that for this configuration

vc53n/R2, and k5A3v/vc. The high-frequency limit is
now given by

lim
v→`

k̃5
1

i ṽ S 12
12 i

A6ṽ
D . ~53!
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Also, this expression is in agreement with~46!, because for
slit flow M5 2

3. The real and imaginary parts of the dynam
permeability for both the tube model and the slit model a
plotted in Fig. 1. We notice that there are only minor diffe
ences between both models. For low frequencies, the
part of the dynamic permeability approaches the station
Darcy permeability, whereas the imaginary part tends
zero. For high frequencies, the imaginary part of the dyna
permeability shows a21/ṽ dependency for both the tub
and the slit model, whereas for the real part theṽ23/2 behav-
ior can be discerned. We also notice that the rollover fr
low-frequency viscous behavior to high-frequency inertia b
havior is observed atv'vc indeed.

VI. CORRUGATED PORE CHANNELS

We noticed in Sec. IV that the bulk contribution from th
small perturbed field«3N has to be taken into account i
order to describe correctly the velocity field for materia
with bounded curvature of the pore surface interface. T
effect of this contribution can elegantly be illustrated in t
case of corrugated pore channels, where we will show
the use of~17! instead of~20! yields erroneous prediction
for w in ~37a! and ~37b!. We will therefore investigate the
influence of wedge-shaped surface asperities on h
frequency permeability. The two-dimensional periodic geo
etry considered is depicted in Fig. 2. The wedge is defined
its apex angleg. Introducing cylindrical coordinatesr , u, we
set the originr 50 on the apexP3 of the wedge and coun
the angleu from one side of the wedge. The singular pote
tial field E(r ,u) is given by15

Er5Anrn21 cosnu, ~54!

Eu52Anrn21 sinnu, ~55!

whereA is an amplitude factor and12,n5p/(2p2g),1.
Introducing the dimensionless stretched boundary layer v
abler5r /«, we find that

Er5An«n21rn21 cosnu5O~«n21!, ~56!

Eu52An«n21rn21 sinnu5O~«n21!. ~57!

To evaluate the high-frequency limit of the permeabili
we will consider the limit of the real part of~20!:

FIG. 1. Dynamic permeability for tube flow~dashed line! and slit flow
~solid line!.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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lim
«/a→0

Rek~v!

f
5 lim

«/a→0
Rê ṽ"E&. ~58!

The integral may be split in the bulk fluid contribution fro
the potential flow region and the boundary layer contrib
tion. The general argument leading to the decomposition~26!
in the bulk fluid was not concerned with any detailed calc
lation of what actually happens in the boundary layer. Sim
larly, the orthogonality property2^E"“q̃&50 between the
‘‘ground state’’ field E and the perturbed field2“q̃ is es-
sentially due to the compact character of the pressure fieq̃
and is not concerned with the specific distribution of th
field. This is why there is, as before, no contribution to~58!
from the potential flow region. We only have the to evalua
the boundary layer contribution. The boundary layer may
divided in two different parts. ‘‘Far’’ from the tip of the
wedges, the boundary layer will have the usual flat-surf
profile. ‘‘Near’’ the tip of the wedges, the boundary lay
profile will be significantly different from the flat-surfac
profile. The pertinent length scale giving these notions
‘‘far’’ and ‘‘near’’ is obviously the diffusion length of the
vorticity, i.e., the viscous skin depthd5A2n/v. Let Lw be
the separation between the tips of the wedges along the
surface~see Fig. 2!. Clearly, asd/Lw goes to zero, the region
of extentd along the pore surface where the boundary la
is of the nonplane ‘‘near’’-type is small compared to t
region of extentLw , where the boundary layer has the usu
flat-surface profile. As will be verified below, the leadin
correction2C« in the developments~36! is not affected.
Here we assumed that the apex angleg is strictly larger than
zero, so that the Johnsonet al.4 L parameter remains defined

FIG. 2. Geometry of two-dimensional pore channel~top! and of the periodic
cell ~bottom!.
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The contributions of the wedges to~58! due to the nonplane
‘‘near’’-type boundary layers is now shown to produce co
rection terms between the second and the third term in~36!,
as indicated in~37!.

We consider Stokes equation~25!,

ṽ2«2¹2ṽ5«2~E2“q̃!, ~59!

in the ‘‘near’’-region around the tip. In the flat-surface cas
the gradient2“q̃ was a small correction with an extra facto
« compared toE. The pressure gradient term2“q̃ describes
the modification of the inertial solid–fluid reaction force du
to the viscous effects. Its averaged value^2“q̃& will be
smaller, in magnitude, than the external unit forcee. Thus,
using the estimate~56!–~57! we may conclude that, to the
leading order,ṽ5O(«n11). Now performing the integral in
~58! around the tip of the wedge, we find that

ReE
0

bE
0

u0
ṽ"EdV5ReS «2E

0

b/«E
0

u0
ṽ"Erdudr D

5Re@«2O~«2n!#5ReO~«2n12!. ~60!

From ~58! and ~60! we thus find that

lim
«/a→0

Rek~v!

f
5ReO~«2n12!. ~61!

Comparing with~37b! yields that

w52n5
2p

2p2g
. ~62!

In a paper by Achdou and Avellaneda,13 an analogous rea
soning was followed for the problem of corrugated po
channels. However, they did not multiply the velocity fieldṽ
by the electric fieldE in ~60!, thus obtaining anO(«n13)
dependence leading tow5n11 @see Achdou and
Avellaneda,13 Eq. ~E7!#. However, when the linear averag
~17! is employed, it is not possible to evaluate the hig
frequency limit of the permeability by only considering wh
happens in the boundary layer. There is a missing contr
tion from the perturbed potential flow in the bulk. The si
nificant difference between~60! and the Achdou and
Avellaneda13 result shows that in the case of wedges the b
contribution dominates the boundary layer contributio
whereas in the bounded curvature case both contribut
were of the same order. These findings will now be subst
tiated numerically.

VII. NUMERICAL COMPUTATIONS

Numerical computations were performed on the perio
polygon P1¯P7 , depicted in Fig. 2. The periodic ce
P1P5P6P7 is a square with sidesLw . The apex angle of the
wedge isg, and its height ishLw , thus leaving a channe
opening (222h)Lw ~see Fig. 2!. Numerical results are pre
sented for varyingg whereh is set 0.5, and for varyingh,
where tang/2 is set 0.5. Taking the pressure gradient in t
horizontal direction, the Stokes problem~7! was solved using
a finite-element code based on a Uzawa decomposi
method. A Dirichlet-type boundary condition was prescrib
at the pore walls:ṽ50. The solution to the Stokes problem
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



g
cu
th

ch
-

c

a
te

h

an

e
t o
re
-
f

nd
in
the
f

ould
sion
he

es
e

er-
ese
ith

er-

a-
-

e-
also
et-
n
and

1773Phys. Fluids, Vol. 15, No. 6, June 2003 Influence of pore roughness
approximated by means ofN1 finite elements and by usin
the variational formulation of the problem. To ensure ac
racy, we have used an iterative automatic method, i.e.,
solution is computed on theN1 mesh, next ana posteriori
estimate of the error is computed, and finally the mesh
locally refined accordingly by means of a Delaunay te
nique developed by Rebay.20 Successful use of this refine
ment method on sharp-edged wedges was reported
Firdaousset al.11 Once the flow field is know, the dynami
permeability is computed using~17!.

Two typical results are shown in Fig. 3, where the re
and imaginary parts of the dynamic permeability are plot
for tang/250.5 and for tang/250.1. In both cases,h
50.5. The high-frequency approximation12AM ṽ23/2 is
drawn as straight lines in both plots. An improved hig
frequency approximation is also drawn~dashed line!, which
will be discussed hereafter. The parametersM andvc were
computed independently, as discussed by Cortis
Smeulders.12 We notice that for both apex angles the21/ṽ
dependency for the imaginary part of the dynamic perm
ability is preserved for high frequencies. For the real par
the dynamic permeability, however, significant departu
from the predicted1

2AM ṽ23/2 behavior are found. Appar
ently, these discrepancies become more significant
smaller apex angle, i.e., for sharper edges~see Fig. 3!. These

FIG. 3. Real and imaginary parts of the dynamic permeability for tang/2
50.5 ~top!, and tang/250.1 ~bottom!. In both figuresh50.5. The circles
and dots represent the numerical results. Both classical~solid lines! and

improved~dashed lines! high-frequency approximations for Re@k̃# are plot-
ted.
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findings are in agreement with those of Achdou a
Avellaneda,13 who reported that the presence of a wedge
the flow channel induces a nonanalytic dependence on
viscous skin depthd5A2n/v, and a slower convergence o
k̃(v) to its asymptotic limit than predicted by~46!. They
subsequently argue that the high-frequency behavior sh
be described as the combination of the asymptotic expan
~46! for laminar boundary layers and the contribution of t
singularity as described by~37b!:

lim
v→`

Rek̃~v!5
1

2
AM ṽ2 3/2@11C1ṽ~1/2!(12w)#, ~63!

or alternatively,

lim
v→`

ṽ3/2Rek̃~v!5
1

2
AM1

1

2
C1ṽ~1/2!(12w)AM , ~64!

where C1 is a numerical constant and the exponentw is
related to the wedge angleg. The shape factorM is defined
in ~51!. In Sec. VI it is derived thatw52n52p/(2p2g)
@see ~62!#, whereas Achdou and Avellaneda13 arrived atw
511n5(3p2g)/(2p2g). We notice that forC150, we
find back the asymptotic behavior~46!. Our numerical com-
putations now offer the possibility of determining the valu
of w and alsoM independently. In Fig. 4, we plotted th
derivative]@ṽ3/2Rek̃(v)#/]ṽ againstṽ on a double logarith-
mic scale for various apex anglesg. This derivative was
computed by means of a three-point centered finite diff
ence method. We notice that for high frequencies, th
curves become straight lines, which is in agreement w
~64!. Linear regression now yields the slope1

2(12w)21 of
the curve, and the value14C1(12w)AM . Consequently, the
value of 1

2C1AM in ~64! is also known, andM can be ob-
tained from linear regression ofṽ3/2Rek̃(v) vs ṽ (1/2)(12w).
The results are given in Table I, and Figs. 5 and 6.

We notice that the present theory is only slightly und
estimating the numerical results forw, whereas the Achdou
and Avellaneda13 predictions give a considerable overestim
tion of the computations. Also in the limiting case of knife
edge singularities (g50), there is a good agreement b
tween the computations and the present theory. We
notice that theM values are reasonably close to the theor
ical value M58Fk0 /L2. This suggests that this definitio
for M is also correct in the case of surface roughness,

FIG. 4. Regression lines to determine the exponentw.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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that the contribution of the singularities can indeed be c
tured in a nonanalytic extension of the existing theory wi
out affecting the parameters of such theory. The obtai
results forw and M are substituted in the high-frequenc
correction~63!, which is plotted in Fig. 3. As expected, w
find excellent agreement.

The effect of the channel opening was checked by va
ing the intrusion heighth, while keeping tang/250.5. Ob-
viously this should not affect the value forw, which only
depends on the apex angleg. From ~62! we find that the
theoretical value is 1.173. The computations are summar
in Table II. We notice that for small wedge heights, the co
putations deviate from theory, because the effect of the
wall is predominant over the effect of the singularity. On t
other hand, for very small openings, the results also dev
from theory since the presence of the opposite wedge
turbs the flow field with respect to the assumptions made
Sec. VI. We notice that good results are obtained forh
50.5, which is the value we used for the computations
Table I.

TABLE I. Dependencies of the exponentw and the scaling parameterM on
the wedge apex angleg for constanth50.5.

tan
g/2

w M

Computations Theory
Achdou and
Avellaneda Computations Theory

0.0 1.001 1.000 1.500 992.74 `
0.1 1.036 1.033 1.516 32.42 35.412
0.2 1.088 1.067 1.534 6.86 9.461
0.3 1.145 1.102 1.551 3.47 4.765
0.4 1.174 1.138 1.569 2.55 3.012
0.5 1.220 1.173 1.587 1.92 2.182
0.6 1.240 1.208 1.604 1.62 1.722
0.7 1.273 1.241 1.621 1.39 1.430
0.8 1.305 1.274 1.637 1.22 1.254
0.9 1.358 1.304 1.652 1.09 1.131

FIG. 5. Dependence of the exponentw on the wedge apex angleg for h
50.5. The circles represent the numerical computations.
Downloaded 14 Sep 2003 to 132.77.4.43. Redistribution subject to AI
-
-
d

-

ed
-
at

te
s-
in

n

VIII. CONCLUSIONS

We analyzed in detail the high-frequency fluid veloci
patterns in the bulk fluid and the boundary layer for smo
and corrugated geometries. The classical Johnsonet al.4

high-frequency limit for smooth geometries was obtained
different manners, thus clarifying the discrepancy with t
Sheng and Zhou5 treatment and the Torquato14 approach.
Two different contributions to the dynamic permeability a
now apparent. One comes from the boundary layer near
pore walls; another comes from a perturbed potential flow
the bulk, induced in a nontrivial geometry by the presence
the boundary layer. This understanding has been applie
derive the correct form of the leading higher-order terms t
are present in corrugated pore channels. Such terms ar
sential to obtain the correct high-frequency behavior of
dynamic permeability when sharp edges are present. In s
cases the bulk contribution dominates the contribution fr
the boundary layer, which causes a slower convergenc
k(v) to its asymptotic limit than predicted from the classic
theory by Johnsonet al.4 We numerically investigated the
dependency of the high-frequency behavior on the we
angle in corrugated channels. For various angles, we c
puted the dynamic permeability by means of a precise fin
element solver for the Stokes’ flow. The effect of varyin
channel opening was investigated separately. The form of
leading higher-order terms was validated by our numer
results. Moreover, we found that the contribution of t
wedge singularities does not affect the original parameter
the Johnsonet al.4 theory.

FIG. 6. Dependence of the shape factorM on the wedge apex angleg for
h50.5.

TABLE II. Dependence of the exponentw on the wedge heighth for con-
stantg (tang/250.5). The theoretical value is 1.173.

w
h Computations

0.1 1.430
0.2 1.347
0.3 1.216
0.4 1.235
0.5 1.220
0.6 1.241
0.7 1.267
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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APPENDIX A: ENERGETIC REPRESENTATION OF
THE DYNAMIC TORTUOSITY

Here we derive the relation~23! using the eigenmode
formalism. First we define the notation:

s̃n5
sn

11 ivsn /n
, ~A1!

and the mean symbol

iXni5 (
n51

`

bn
2Xn . ~A2!

Then ~18! and ~22! read as

k~v!

f
5is̃ni , ~A3!

and

a~v!5
n

ivis̃ni . ~A4!

From ~A4! we write

a~v!5
n

iv

is̃n* i
is̃niis̃n* i

, ~A5!

where* denotes complex conjugation. Combining~A5! with
the identity

is̃n* i5
iv

n
is̃ns̃n* i1is̃ns̃n* /sni , ~A6!

we get

a~v!5
is̃ns̃n* i

is̃niis̃n* i
1

n

iv

is̃ns̃n* /sni
is̃niis̃n* i

, ~A7!

where the form of~23! may be recognized. Using~8a!, it is
easy to verify that

^ṽ&"e5is̃ni ~A8!

and

^ṽ"ṽ* &5is̃ns̃n* i . ~A9!

Using ~9a!, we finally verify that

2^ṽ•¹2ṽ* &5is̃ns̃n* /sni . ~A10!

APPENDIX B: PROOF OF THE IDENTITY „41…

We want to prove the identity

E
Sp

E"“FdS5E
Sp

F
]Eb

]b
dS. ~B1!

It holds that

E"“F5“"~EF!, ~B2!

because“"E50. We may now introduce the Gauss coord
natesxm on the curved surfaceSp , wherem51,2,b. Any
tensor in the conventional Euclidian coordinates may be
pressed in thexm system:19
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x-

E
Sp

“"~EF!dS5E
Sp

@EmF# ,mdS

5E
Sp

@EiF# ,idS1E
Sp

@EbF# ,bdS, ~B3!

where the subscript comma is used for the derivative, ani
runs over 1,2 only. Due to the compact character of the fi
F, the third integral in~B3! is zero, so that we find from~B2!
and ~B3! that

E
Sp

E"“FdS5E
Sp

Eb

]F

]b
dS1E

Sp

F
]Eb

]b
dS. ~B4!

BecauseEb50 on Sp , we obtain the desired result.
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